Global Precipitation Measurement

System Requirements Review Precipitation Processing System

Erich Franz Stocker 301/614-5178 Erich.Stocker@gsfc.nasa.gov Goddard Space Flight Center

June 4 - 5, 2002

- Overview of trade studies conducted
- System approach adopted
- PPS system concept
- PPS architectural properties
- Types of data products produced
- Driving Requirements
- Requirements on PPS from other mission elements
- Requirements by PPS on other mission elements
- Risks
- Schedule

0

Σ

~

A

0

Level 1 Requirements

Precipitation Data Processing Requirements:

- Precipitation Measurement Synthesis
- Product Definition
- Data Processing Capacity and Operations
- Instrument Data Handling
- Data Archiving and Distribution
- Ground Validation Coordination

Precipitation Processing System Requirements

Precipitation Measurement Synthesis

- [6.2.1]
- Used for the calibration transfer standard between primary and constellation s/c
- Product Definition

[6.2.2, -3, -4]

- This is the output of the GPM mission
- Open Architecture

[6.2.5]

- What is wanted is the ability to make incremental improvements
- Processing Capacity

[6.2.6]

- Makes sure the system is big enough to do the job
- Instrument Data Handling

[6.2.7]

- Defines the handling of raw data into and within the PPS
- Ground Validation

[6.2.8]

- Coordinate overpass and co-observations
- Data Processing Operations

[6.2.9]

- Handle all the data within the latency req's
- Data Archiving and Distribution

[6.2.10]

- Makes sure the proper people have their data in a timely manner

• Overall System Architecture

- Centralized with all processing from Level 0 done at GSFC
- Distributed and "Federated" processing through Level 1B done by partner systems with PPS creating global combined products

System Delivery Paradigms

- Fresh Build
- MODAPS approach strongly tied to Earth Observing System (EOS) Data Information System (EOSDIS) EOSDIS Core System (ECS)
- TRMM Data Information System (TSDIS) weakly tied to EOSDIS V0
- CloudSat (Colorado State University) PI based ESSP system

Technical Topics

- Impact and interactions with Strategic Evolution Earth-Science-Enterprise Data Systems (SEEDS) on PPS
- GPS vs Ephemeris based geolocation and geolocation tools for Level 1B processing
- Data Formats
 - Logical data schemas
 - Physical format representations
- Data Volume and Storage evolution
- Beowulf parallel computing systems

• Overall System Architecture

- Geographically distributed
- Major partner role in the provision of data through Level 1b and algorithms
- Federated approach (interchange through published ICD's)

Delivery Approach Adopted

- Science team led processing system loosely coupled with EOSDIS
- Large-scale reuse of TSDIS
- Close connection with SEEDS activities

~

S

Ø

ш

0

۵

۵

8

0

PPS System Concept

- PPS shall have an open architecture (6.2.5)
 - This is strictly defined in requirements to allow easy modification of algorithms without perturbing the rest of the system
- PPS should be scalable both to support larger and smaller processing environments
- •PPS should be able to add additional processing threads from other potential partners/missions with only "incremental" or no software costs
- PPS software should be portable and able to run on a variety of different platforms without requiring major revision
- •PPS architecture/software should be flexible and allow the insertion of new or different processing streams without requiring major software revision

• Outreach near real-time rain-map product

- Global rain-map image created from brightness temperatures from mission radiometers
- Availability time dependent upon the source of the Level 1B brightness temperature data
 - TDRSS continuous mode data appropriate rainmap image areas updated every 10mins from all data at hand
 - Orbital products appropriate rainmap areas updated within 10 mins of receiving all necessary well-calibrated, well-geolocated Level 1b products from partners

• 3-hr global rainfall near real-time products for applications

- Availability on server within 30 minutes of receiving all required input for generating a global 3 hr product
- Multiple sources: data obtained through TDRSS continuous access, Level 1B provided by national and international partners

Research quality Precipitation Products

- Swath oriented products (geolocated and calibrated) containing instrument values
- Swath oriented products containing geo-physical precipitation data
- Time-sampled, spatially gridded precipitation data
- Available for distribution within 48 hours of receiving all required input data for production

- Production of 3hr global near real-time applications products (6.2.9.2)
- Synthesis of radiometer measurements (6.2.1)
- Ground Validation software for error characterization (6.1.3.3)
- Full Resolution Pixel Tables (6.2.4)

Key Requirements from Other Mission Elements

- PPS shall provide overpass information for all GPM spacecraft to GPM validation sites
 - *Predictive information over a 7 day period (6.2.8.3)*
 - Definitive information on day before overpass (6.2.8.4)
- PPS shall provide overpass satellite data to GV processing centers within an hour of their production (6.2.8.6)
- PPS shall transmit data products to GSFC DAAC
 - 6.2.10.1 (latency)
 - *6.2.10.2* (*DAAC* designation)
- PPS shall distribute data to the GPM Science Team (6.2.10.4)
- PPS shall make available all data to GPM partners (6.2.10.5)

- GV team shall provide software to process error characterization data to the PPS (6.1.3.3)
- GV sites shall produce a weekly report of bias and bias uncertainty vs rain-rate and send to PPS (6.1.3.1)
- Mission operations shall provide science data routinely to the PPS (6.2.7.2 & 6.3.1.5)
- Science data files from mission operations shall contain (5.3.15.10)
 - Spacecraft time
 - x,y,z spacecraft location in Earth Centered Earth Fixed format
 - Latitude and longitude and height information
- Science team shall provide all algorithm code required to produce swath products in a format established by an ICD.
- Science team shall provide all algorithm code required to produce gridded products that require more than mathematical summarization and gridding in a format established by an ICD

• International Partnership Agreements

- Network connectivity
- Data Availability
- Geolocation and Calibration
- Data content (format)
- *Data exchange formats*
- *Interface control documents*

• Global Product Production for near realtime application product

- Data latency of level 1B brightness temperature products from partner facilities
- Science algorithm to merge data meaningfully from
 - Dissimilar sensors
 - Various resolutions
 - *Various footprints*

megha-tropique

Realtime Products - data latency Partner GCOM B1 SSMI EGPM Core GMI NASA Constellation GMI Total Product Latency = m + t + f + d + e + g + 20 mins. 3 Hr. Near-+ 20 mins. Realtime Product

8

0

Precipitation Processing System Summary Schedule

5/2/02

	CY:	2002			2003				2004				2005				2006				2007					
	CY.	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	T :	3	4	1	2	3	4	1
GPM SRR		\triangle	6/4-5	;			•					•		•				•		·						
Internal Data System Prototype demo and review				<u> </u>)/15 																					
Prototype Enhancement								1	 0/31 																	
GPM PDR							\triangle	8/12-14																		
Prototype Enhancement Internal demo and review								<u></u> 1	 0/31 																	
GPM CDR											\triangle	8/10-12	:													
Receive prototype science algorithms L1 - L3											_	9/15														
Internal Data System Build 1 Review/Demo											4	<u></u>)/15 													
Implement Build 2																<u></u>	 									
Receive Version 2 Algorithms L1 - L3/Final Data Formats															Ζ	9/15	5									
Internal Data System Build 2 Review/Demo																10	 0/15 									
Implement Build 3 (initial operational build)	I																			\perp	9/29	 				
Version 3 algorithms L0 - L3																				\triangle	9/15					
Internal Data System Review/Demo																				_	<u>\</u> 10/	 13 				
Final Operational algorithms																					\triangle	 11/15 				
Operational Acceptance Testing Build3																						1.	/31			
Continuous Operational Testing/corrections																										11/30

8 0